Learn How to Use The Roulette Layout To Calculate Winning Payoffs For All Straight-up Winning Bets

Understand that every square on every street on every roulette layout has a value depending on the bet that has been made.

Let’s take a look at our first example!
One chip bet straight up pays 35 to 1
Two chips bet straight up pays 70 to 1
Three chips bet straight up pays 105 to 1

So the value of one full street, “meaning 3 squares” going across equals 105.
The value of two full streets or 6 squares equals 210
What would be your total answer if you had two full streets and one square or $2 \frac{1}{3}$rd streets? Answer $210 + 35 = 245$.

Look at the following illustrations but don’t let them scare you. The only purpose of these illustrations is to show you that each square has a value, every two squares have a value and three squares or the street has a value.

1st Straight-up Bets!

\[
\begin{array}{ccc}
1 & 2 & 3 \\
35 \text{ to } 1 & 70 \text{ to } 1 & 105 \text{ to } 1 \\
\end{array}
\]

= $100 + 5$

The first thing that is required in order to use the layout as a calculator is to look at the number of chip or cheques that has been wagered on the winning number.
Once you have done that you will look for that number printed on the layout and count down the number of full streets above that number or too that number.
Let’s go down to illustration #8th so you get a complete understanding.

Refer to row and street as the same thing.
2^{nd} Split Bets

<table>
<thead>
<tr>
<th>1</th>
<th>2</th>
<th>3</th>
</tr>
</thead>
<tbody>
<tr>
<td>17</td>
<td>34</td>
<td>51</td>
</tr>
</tbody>
</table>

$= 50 + 1$

3^{rd} Corner Bets

<table>
<thead>
<tr>
<th>1</th>
<th>2</th>
<th>3</th>
</tr>
</thead>
<tbody>
<tr>
<td>8</td>
<td>16</td>
<td>24</td>
</tr>
</tbody>
</table>

$= 25 - 1$ for each street

4^{th} Straight Up & Split Bets

<table>
<thead>
<tr>
<th>1</th>
<th>2</th>
<th>3</th>
</tr>
</thead>
<tbody>
<tr>
<td>52</td>
<td>104</td>
<td>156</td>
</tr>
</tbody>
</table>

$= 150 - 6$ for each street

5^{th} Straight Up Split & Corner

<table>
<thead>
<tr>
<th>1</th>
<th>2</th>
<th>3</th>
</tr>
</thead>
<tbody>
<tr>
<td>60</td>
<td>120</td>
<td>180</td>
</tr>
</tbody>
</table>

6^{th} Four Corners & Straight Up

<table>
<thead>
<tr>
<th>1</th>
<th>2</th>
<th>3</th>
</tr>
</thead>
<tbody>
<tr>
<td>64</td>
<td>24</td>
<td>129</td>
</tr>
</tbody>
</table>

7^{th} Four Splits Bet & Straight Up

<table>
<thead>
<tr>
<th>1</th>
<th>2</th>
<th>3</th>
</tr>
</thead>
<tbody>
<tr>
<td>103</td>
<td>206</td>
<td>309</td>
</tr>
</tbody>
</table>
Illustration #8

Assume that the player bet 12 cheques on number 34 and won.

Understanding the Layout

Top Line

<p>| | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>2</td>
<td>3</td>
</tr>
<tr>
<td>4</td>
<td>5</td>
<td>6</td>
</tr>
<tr>
<td>7</td>
<td>8</td>
<td>9</td>
</tr>
<tr>
<td>10</td>
<td>11</td>
<td>12</td>
</tr>
<tr>
<td>13</td>
<td>14</td>
<td>15</td>
</tr>
<tr>
<td>16</td>
<td>17</td>
<td>18</td>
</tr>
<tr>
<td>19</td>
<td>20</td>
<td>21</td>
</tr>
<tr>
<td>22</td>
<td>23</td>
<td>24</td>
</tr>
<tr>
<td>25</td>
<td>26</td>
<td>27</td>
</tr>
<tr>
<td>28</td>
<td>29</td>
<td>30</td>
</tr>
<tr>
<td>31</td>
<td>32</td>
<td>33</td>
</tr>
<tr>
<td>35</td>
<td>36</td>
<td></td>
</tr>
</tbody>
</table>

This is street #1
street #2
street #3
street #4
street #5
street #6
street #7
street #8
street #9
street #10
street #11
street #12

12 Chips

These are columns 1 2 & 3

Day One

STRAIGHT UP BETS – Pays – 35 TO 1

1. First – Just count the number of cheques that were bet straight up on #34 the winning number. (Example 12 winning cheques)

2. Second look at the Roulette Layout as a calculator and starting from the top line, count down the number of full streets until you get to the number 12. Illustration #9

Top line

<p>| | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>2</td>
<td>3</td>
</tr>
<tr>
<td>4</td>
<td>5</td>
<td>6</td>
</tr>
<tr>
<td>7</td>
<td>8</td>
<td>9</td>
</tr>
<tr>
<td>10</td>
<td>11</td>
<td>12</td>
</tr>
</tbody>
</table>

1 street
2 streets
3 streets
4 streets

Illustration #9

3. In this case by looking at the example we can see the number of full streets down to the (12) is 4 full streets.
4. We know the payoff for three cheques bet straight up is \(105\). However I want you to start at the top line, go down and count each full street as \(100\) as the \textit{illustration #10} is showing. Once completed, I then want you to go back to the top line and add \(+5\) for each street as \textit{illustration #10} is showing.

\textit{Illustration #10}

\begin{tabular}{ccc}
1 & 2 & 3 \\
4 & 5 & 6 \\
7 & 8 & 9 \\
10 & 11 & 12 \\
\end{tabular}

\begin{tabular}{ccc}
1 & 2 & 3 \\
4 & 5 & 6 \\
7 & 8 & 9 \\
10 & 11 & 12 \\
\end{tabular}

\begin{tabular}{ccc}
& + 100 & \\
& + 200 & \\
& + 300 & \\
& + 400 & \\
& + 5 & \\
& + 10 & \\
& + 15 & \\
& + 20 & \\
\end{tabular}

5. Now add both answers together \(400 + 20 = 420\)! That is the payoff for 12 straight up.

\textbf{WHEN ODD AMOUNTS NEED TO BE CALCULATED}

1. Look at the number of cheques that were bet. (Example 13)
2. Count the number of full streets above the number 13 in this case it is 4 full streets. Count each street as 100! Go back and count each street as 5! Add your totals together and your answer is 420. Now you still have one more cheque value to add to your total! \(35 + 420 = 455\).

\begin{tabular}{ccc}
1 & 2 & 3 \\
4 & 5 & 6 \\
7 & 8 & 9 \\
10 & 11 & 12 \\
\end{tabular}

\begin{tabular}{ccc}
& 1 street = 105 \\
& 2 streets = 210 \\
& 3 streets = 315 \\
& 4 streets = 420 \\
& = 455 \\
\end{tabular}

\textit{Illustration #11}

3. Count each full street as \(100 = 4 \times 100 = 400\)
4. Go back now and count each full street as \(5 - 4 \times 5 = 20\)
5. Now add both answers together $400 + 20 = 420$
6. Now add 35 for each odd amount to the total. $420 + 35 = 455$
7. Had the number of checks bet been 14, “then 70 would have been added to the total making it 490.

Here is another popular way for Roulette Dealers and Supervisors to calculate roulette payoffs for straight up bets.

Mathematical Formula
Using the (7) as the key number

Examples
“12 straight up wins”

Illustration #12
1. Divide the total number of checks bet by 2. (Example 12)
2. 12 divided by 2 = 6
3. Now multiply your answer of (6) by the key number (7) $6 \times 7 = 42$
4. Now to complete the formula simply add a “0” to your answer bringing the total to 420.

When there are an odd number of checks being bet, (example 13) go to the next lowest even number, (12) follow the same formula, “however this time you must now add 35 to your total to make up for that one additional cheque.

Examples Of Straight Up Bets Even Numbers
14 divided by 2 = 7 – times key number of 7 = 49 – add a 0 on the end = 490
18 divided by 2 = 9 – times key number of 7 = 63 – add a 0 on the end = 630
24 divided by 2 = 12 – times key number of 7 = 84 – add a 0 on the end = 840

Examples of Straight Up Bets Odd Numbers
Drop the odd number down to the next even number
15 odd becomes 14 even divided by 2 = 7 and multiplied by 7 = 49 add a 0 to the end and add 35 for the one additional cheque.

Begin
Drop 15 odd to become 14 even
14 divided by 2 = 7
7 times 7 = 49
Add a “0” on the end 490
Now add 35 for the one additional cheque.
How to Use the Roulette Layout To Calculate the Payoffs for All Split Bets

Understanding the Layout

<table>
<thead>
<tr>
<th></th>
<th>1</th>
<th>2</th>
<th>3</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>5</td>
<td>6</td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>8</td>
<td>9</td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>11</td>
<td>12</td>
<td></td>
</tr>
<tr>
<td>13</td>
<td>14</td>
<td>15</td>
<td></td>
</tr>
<tr>
<td>16</td>
<td>17</td>
<td>18</td>
<td></td>
</tr>
<tr>
<td>19</td>
<td>20</td>
<td>21</td>
<td></td>
</tr>
<tr>
<td>22</td>
<td>23</td>
<td>24</td>
<td></td>
</tr>
<tr>
<td>25</td>
<td>26</td>
<td>27</td>
<td></td>
</tr>
<tr>
<td>28</td>
<td>29</td>
<td>30</td>
<td></td>
</tr>
<tr>
<td>31</td>
<td>32</td>
<td>33</td>
<td></td>
</tr>
<tr>
<td>34</td>
<td>35</td>
<td>36</td>
<td></td>
</tr>
</tbody>
</table>

This is street #1

This is street #2

This is street #3

This is street #4

This is street #5

This is street #6

This is street #7

This is street #8

This is street #9

This is street #10

This is street #11

This is street #12

18 Chips on this Split

These are columns 1 2 & 3

Illustration #13

SPLIT BETS PAYS – 17 TO 1

First – Just count the number of cheques that were bet on the split bet #31 & #34 the winning number. (Example 18 winning cheques)

Second – Now look at the Roulette Layout as a calculator and starting from the top line, count down the number of full streets until you get to the number 18, which represents the number of cheques bet. Illustration #

Illustration #10

<table>
<thead>
<tr>
<th></th>
<th>1</th>
<th>2</th>
<th>3</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>5</td>
<td>6</td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>8</td>
<td>9</td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>11</td>
<td>12</td>
<td></td>
</tr>
<tr>
<td>13</td>
<td>14</td>
<td>15</td>
<td></td>
</tr>
<tr>
<td>16</td>
<td>17</td>
<td>18</td>
<td></td>
</tr>
</tbody>
</table>

street 1 = 50 +1
street 2 = 100 +2
street 3 = 150 +3
street 4 = 200 +4
street 5 = 250 +5
street 6 = 300 +6
1. Because these are split bets, count each full row as 50.
2. Then multiply $6 \times 50 = 300$
3. Next go back now and count each full row as 1
4. Then Multiply $6 \times 1 = 6$
5. Now add both answers of both together. $300 + 6 = 306$
6. That is your answer for 18 cheques on a split.

WHEN ODD AMOUNTS NEED TO BE CALCULATED
1. Count the number of checks bet. (Example 17)
2. Count the number of full rows, above the number of checks bet. Answer 5
3. Count each full row as 50.
4. Multiply $5 \times 50 = 250$
5. Go back and count each full row as 1.
6. Multiply $5 \times 1 = 5$
7. Now add both your answers together
8. $250 + 5 = 255$
9. Now add 17 for each number (16 & 17) that was not calculated into the answer. $17 + 17 = 34$
10. Now add this to your total to establish the payoff.
11. $255 + 34 = 289$

MATHEMATICAL FORMULA USED BY THE MAJORITY OF CASINO PERSONNEL
In this particular case most dealers and supervisors calculate every three checks as 51. They then add 17 for the odd amounts that cannot be divided by 3. Look at example below.

29 checks on a split,
3 divided into 29 goes nine times and leave’s a remainder of two.
$9 \times 51 + 34 = 493$. You decide which way is actually easier for you.
My way of using the layout as a calculator!
Your way of using straight mathematics!
HOW TO USE THE
ROULETTE LAYOUT TO
CALCULATE CORNER BETS

CORNER BETS – 8 TO 1
1. Look at the total number of checks bet on the corners. (example 36)
2. Look to see how many full rows down the number 36 is. (12)
3. Count each full row as 25 or every 4 rows as 100. Multiply 12 x 25 = 300
4. Count each full row as 1. Multiply 12 x 1 = 12
5. Subtract 12 from 300 to get the correct answer. 300 minus 12 = 288

WHEN ODD AMOUNTS NEED TO BE CALCULATED
Look at the total number of checks bet. (Example 34)
Count the number of full rows above that number, (11)
Count each full row as 25, 275
Now go back and count each full row as 1, (11)
Subtract this amount (11) from 275 = 264
Now add 8 for each odd number 264 +8 = 272
Roulette Keys

STRAIGHT UP BETS UP PAYS 35 TO 1
Cut total stack of cheques in half ------------------ 12 = 6
Multiply your answer by 7-- x 7
Add a “0” ------------------------------- 42 + 0 = 420

SPLIT BETS PAYS 17 TO 1
Every 3 cheques total 51
Suggestion; Use the layout as a calculator counting each street as 50 + 1.

CORNER AND SPLIT BETS PAYS 25 TO 1
When, “even number of cheques, are bet on both corners and splits. Multiply the total number of cheques in one stack by 25. (Example 4 on a split 4 on a corner 4 times 25 = 100

STREET BETS PAY 11 TO 1
When more than 10 checks are bet (example 16) add the two number together 1 + 6 = 7 Now simply place this number in the center of the two for your answer. 176

STRAIGHT UP AND SPLIT BETS PAYS 52 TO 1
When, “even number cheques, are bet on both (example 12 straight up and 12 on a split. Cut either stack in half to get your first answer, (6) now simply add the total amount of cheques in both stacks to get your second answer. (24) 6 + 24 = 624

STRAIGHT UP – SPLIT – AND CORNER BETS PAYS 60 TO 1
When the amount of cheques bet on each position is the same, add the total number of cheques together. (Example 3 straight up 3 split and 3 on the corners total 9 cheques. Now multiply by 2, 2 x 9 = 18 then add a “0” = 180

DOUBLE STREET BETS PAYS 5 TO 1
Cut the total number of cheques bet in half and then adds a zero to get your answer. Example 14 cheques divided by 2 = 7 add a “0” for a total of 70.

FIVE NUMBER BETS PAYS 6 TO 1
Cut the bet in half – example 12 = 6 – now add “0” 6 + 0 = 60 now just add the total number of cheques that were originally bet to get your answer. 60 + 12 = 72
The Best Way to Study
Basic Strategy

<p>| | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>A – A</td>
<td>Always Split</td>
<td>Always</td>
</tr>
<tr>
<td>2 – 2</td>
<td>2 Through 7 split – otherwise hit</td>
<td>2 – 7</td>
</tr>
<tr>
<td>3 – 3</td>
<td>2 Through 7 split – otherwise hit</td>
<td>2 – 7</td>
</tr>
<tr>
<td>4 – 4</td>
<td>5 – 6 split – otherwise hit</td>
<td>5 – 6</td>
</tr>
<tr>
<td>5 – 5</td>
<td>2 Through 9 double otherwise hit</td>
<td>2 – 9</td>
</tr>
<tr>
<td>6 – 6</td>
<td>2 Through 6 split otherwise hit</td>
<td>2 – 6</td>
</tr>
<tr>
<td>7 – 7</td>
<td>2 Through 7 split otherwise hit</td>
<td>2 – 7</td>
</tr>
<tr>
<td>8 – 8</td>
<td>Always Split</td>
<td>Always</td>
</tr>
<tr>
<td>9 – 9</td>
<td>7 – 10 – Ace Stand – otherwise split</td>
<td>7 – 10 – Ace</td>
</tr>
<tr>
<td>10 – 10</td>
<td>Always Stand</td>
<td>Always</td>
</tr>
</tbody>
</table>

<p>| | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>A – 2</td>
<td>5 – 6 Double – otherwise hit</td>
<td>5 – 6</td>
</tr>
<tr>
<td>A – 3</td>
<td>5 – 6 Double – otherwise hit</td>
<td>5 – 6</td>
</tr>
<tr>
<td>A – 4</td>
<td>4 – 5 – 6 Double – otherwise hit</td>
<td>4 – 6</td>
</tr>
<tr>
<td>A – 5</td>
<td>4 – 5 – 6 Double – otherwise hit</td>
<td>4 – 6</td>
</tr>
<tr>
<td>A – 6</td>
<td>3 – 4 – 5 – 6 Double – otherwise hit</td>
<td>3 – 6</td>
</tr>
<tr>
<td>A – 7</td>
<td>2 – 7 – 8 Stand 3 thru 6 Double owh</td>
<td>2 – 7 – 8 3 – 6</td>
</tr>
<tr>
<td>A – 8</td>
<td>Always stand</td>
<td>Always</td>
</tr>
</tbody>
</table>

Hard

<p>| | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>8</td>
<td>Always hit 8 or below</td>
<td>Always</td>
</tr>
<tr>
<td>9</td>
<td>3 Through 6 double otherwise hit</td>
<td>3 – 6</td>
</tr>
<tr>
<td>10</td>
<td>2 Through 9 double otherwise hit</td>
<td>2 – 9</td>
</tr>
<tr>
<td>11</td>
<td>Always double</td>
<td>Always</td>
</tr>
<tr>
<td>12</td>
<td>4 – 5 – 6 Stand otherwise hit</td>
<td>4 – 6</td>
</tr>
<tr>
<td>13</td>
<td>2 Through 6 stand otherwise hit</td>
<td>2 – 6</td>
</tr>
<tr>
<td>14</td>
<td>2 Through 6 stand otherwise hit</td>
<td>2 – 6</td>
</tr>
<tr>
<td>15</td>
<td>2 Through 6 stand otherwise hit</td>
<td>2 – 6</td>
</tr>
<tr>
<td>16</td>
<td>2 Through 6 stand otherwise hit</td>
<td>2 – 6</td>
</tr>
<tr>
<td>17</td>
<td>Always stand</td>
<td>Always</td>
</tr>
</tbody>
</table>